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Computations of pressure distribution on the wing, and the shape of the shock wave are 
presented in Fig. 6 for several values of the angle y and the angle of attack. The graphs, 
which are constructed form the first approximation, permit to draw the conclusion that 

the pressure change is fnsignificant along the span of the wing. The principal change is 
observed near the plane of symmetry, where for decreasing ‘)? an increase in the values 

of pressure takes place. 
We note that the theory is applicable to flows without internal shocks, therefore the 

angle y can change in a relatively narrow range. 
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Many results in the theory of hypersonic flows past slender bodies are based on the ana- 

logy with unsteady flows in a space with one fewer dimensions. This analogy was devel- 
oped by the authors of papers (l-43. However, its use for calculating gas parameters near 
the surface of a body often entaIls considerable errors, For the purpose of accurate deter- 

mination of flow characteristics throughout the domain, the authors of [5-93 developed 

the notion of a high-entropy layer which contains estimates of the required quantities 
along the streamlines intersecting the front of the strong bow shock wave. Entropy layer 

methods have proved especially convenient in dealing with inverse aerodynamic problems 
in whfch the position of the shock wave is assumed to be given and the shape of the body 

must be determined in the course of solution. Specifically, the authors of [6-93 investi- 
gated the problem of the body shape associated with the motion of a gas due to an intense 
explosion. 

The analysis of the results of Sychev and Yakura carried out by the authors of (lOI 
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indicates that the explosion analogy holds in the first approximation in calculating hyper- 
sonic flows throughout the zone behind the shock wave front, including the gas layer 

adjacent to the body, In determining the body contour it is sufficient to choose correctly 

the entropy along the particle trajectory which is its generatrix. Since the flow element 
past the body must intersect the shock wave front at a right angle, the entropy is obtain- 
able by means of the Hugoniot relations for the normal shock. The use of the results of 

the intense-explosion theory developed by Sedov (l1, I.21 and Taylor p3] does not entail 
any corrections of the latter. 

The present paper concerns the more general inverse problem in which the shape of 

the shock wave is described by a power function of the coordinates measured in the direc- 

tion of the flow velocity at inf~i~, The authors of 114, 15] investigated the problem 
without analyzing many of the important qualitative properties of flow in a high-entropy 
layer. We show that determination of the body contour from the particle trajectory with 

an entropy value determined from the relations for a normal shock in a steady flow gene- 

rally yields incorrect results. Moreover, in the limiting case noted in [6] the coefficient 
of the correction term occurring in the equation of the contour becomes infinity. The 
correction due to the high-entropy layer can increase without limit for a fixed value of 

the longitudinal coordinate. The intense-explosion theory (most important for practical 
applications) constitutes an exception from this standpoint. 

I, Ancfllrry trrnrform&tfonr. Let us consider plane-parallel and axisym- 
metric steady gas motions. We assume that the Mach number at infinity ( M, ) is infi- 

nitely large and denote the axes of the Cartesian or cylindrical coordinate system by 5 

and r ; the x-axis is directed along the velocity vector of the unperturbed flow. 

We assume that the shape r = rs (5) of the shock wave is prescribed and that the 

contour of the streamlined body must be determined in the course of solving the resulting 
inverse problem. Following paper 161, we set 

r.j = cxn (1.1) 

where C and n are arbitrary constants. The subsequent results are based essentially on 

the analogy between hypersonic flow past slender bodies and unsteady flows in a space 
with one fewer dimensions. From the results of D6, 171 we conclude that 

21 fv + 2) = n, G n 
where Y = 1 for plane-parallel flows and v = 2 for axisymmetric flows. The value 

n = n, corresponds to the intense-explosion problem solved by Sedov ill, 121 and 

Taylor g3]. TFe problem of a piston expanding in a gas can be solved only if the strict 
inequality n, < n is fulfilled. This inequality will be the basis of our entire analysis, 

since the problem of using the explosion analogy for calculating hypersonic gas motions 

has already been investigated PO]. 
Paper [5] is devoted chiefly to the derivation of the distribution of the transverse coor- 

dinate near the surface of the body when the von Mises variables are taken as the inde- 
pendent variables. We have 

Here 3c is the Poisson adiabatic exponent, the function H is equal to the ratio of tile 
pressure p in the perturbed-flow zone to the pressure behind the shock wave, and 
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Formula (1.2) is not valid for small z, since the perturbations of the velocity fields 
turn out to be finite and cannot be described in terms of a theory hased on the analogy 

between steady hypersonic flow past bodies and unsteady one-dimensional flows, Con- 

versely, the formula becomes more exact as the 2-coordinate increases ; we can there- 

fore simplify it by taking its limit as z + 00. 

To this end we make use of the relationship between the variable 9 in the interval 

from the right side of Eq. (1.2) and the self-similar variable 3L used by Sedov f183, 
Denoting the ratio of the velocity u in the perturbed-flow zone to the velocity behind 

the shock wave front by f, we can write [6] 
x 

Let us introduce the function g defined as the ratio of the density p at an arbitrary 

point between the shock wave and body to the density obtained as a result of intense 

shock compression of the gas. The functions f and g and their first derivatives are rela- 

ted by the expression 

( f 
_yh)~+(~+2pf)g~o 

which appears in monograph [19]. This relation is readily transformable into a form 

which enables us to compute the integral occurring in the definition of the variable ‘1. 

Hence, 

The adiabatic&y integral /J.9] 

~%+lWn)/vn g%(l-n)/vn h 2 

[ ( 
- ._?+L h _ f)]Nt-n)‘m = gx 
X--l 

enables us to simplify the expression for the variable 7 still further, 
9 = (QWW2N 

(1.4) 
where by definition b (A) = I# (11). The above relation allows us to transform formula 
(1.3) for the function G into 

c; = &X f ,2~4-2”-“’ hf_“x 
G.5) 

Converting from the variable q to the variable h in Eq. (1.21, we obtain 

The surface of the expanding piston corresponds to the nonzero quantity h = h, in the 

self-similar solutions familiar to us from the gas dynamics of one-dimensional unsteady 

flows. As h + h, , the functions f, g and It are given by the asymptotic formulas 

f=fo= I/$ (x + 1) & + . . _, g = g, (h - h*)~(~-n)~vnx-2(1-n)’ + . . . ( 
h=b,f... (1.7) 

The constants x,, g, and h, occurring in these expressions are interrelated by the 
equation 
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g-1 = nx(x-1) 
(x + 1) [vnx - 2 (1 -n)] hi 

l/X gay ( ) 
[wax-2(1-n)lhr(l-n) 

x- (1.8) 

For 2 + 00 and finite values of the difference A - & the function G -N g-r. As A 4 &, 

we have 8 -, 0 and h -, ho, as required by asymptotic expansions (1.7). Hence, as A + 
- ho and 3: 4 QO the second of the two terms appearing in square brackets in the right 

side of Eq. (1.5) may turn out to be larger than the first, while for A = &, we have 

c = (Ascshg)-Us tl(t-nllx 

This implies that the ratio c / z + 0 as t -* CC for all values of the difference A- 
- 10. Making use of this fact, we can write out the expansion 

I 

4 
1 -* 

n?~2Z-2(r-n)jr~ 1 -1+ 
2% 

_ nVZ-s(r-n)hC + . . . 
(x f 1)” (1.9) 

In order to find the distribution of the transverse coordinate near the generatrix of the 
body at large distances from the head of the shock wave, we must use only the first term 

of series (1.9) in computing the integral in the right side of (1.6). This operation is 
equivalent to neglecting the deviation of the longitudinal component c’% of the particle 
velocity vector from the velocity V, in the unperturbed zone where the gas temperature 

is zero. It is easy to show that the remaining terms of series (1.9) make a contribution 

of lower order in I to the integral in question. In the first approximation this yields 

A 1 1 

{ s 

‘;- 
r= Cl? 1 + v ~“-1~ Igx + n7C7t-2(l-n) It]- I;d), 

1 
(1.10) 

The direct expansion of the integrand for large values of the coordinate now becomes 

impossible. Hence, we write A 1 

\ 
j+‘-fg Ig” + n2pt-Nl-n)h]w y& = 

A 

=rs+;\ 1 

1 

{L”-‘g [gx + n%‘@(‘-‘%I- Tdk) = Js + JI , 

1 L 

where the parameter E must be chosen in such a way that, on the one hand, 

gx (b + e) > nQ?~-~(~-~)h (La + e) (i.ii) 

and on the other a < i. By virtue of condition (1.11). expansion of the integrand in Js 
is permissible. Making use of this expansion, we obtain 

c 

Js= v 1 [(& + 8): - I] - + ~~&-2(‘-n) 
7 

h”-lg‘Xhd?b + . . . 

i 

To compute the integral in J1 we first transform the sum, 

Here 
gx + nsC2a-s(t-nlh = g;” (A - Lo)--Wu (i + 4 

p = go” (A - a#@ + n%%z-%(1-n), 6 = 
vnx - 2 (i - n) 

2% (i - n) 

m = .2&-a(l-n)g-xp’I [goX (h - l.p8h - hogX] 

The coefficients RO and hr must be taken from expansions (1.7). Making use of these 
expansions, we can readily show that m 4 1 for large values of x and 0 < & - &J ( a. 
Taking account of the former inequality, we find that in the first approximation 
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Let 
(1.12) 

Recalling inequality (1.11) which the parameter e satisfies, we see that s> i. This 
estimate plays a very important role in the discussion to follow. Converting from inte- 
gration over h to integration over u by means of the second formula of (1.1’2). we can 
express J, in the form rl 

Jl=eep +'I [~++euyfUM+l/X 

(S w 

d" 

1 : 
(i + mjl'~ 

) (1.13) 

The subsequent transformations of the above expressions are based on the familiar 

expression YZO] for hypergeometric functions F (a, 8, f, Z) , 
IL 

s up-ldu up 
o (1 + w= =pW,B,ifP;-6~) (1.14) 

In using formula (1.14) to compute J, it is convenient to consider the plane-parallel 
and axisymmetric motions of the gas separately. 

8, Plrna-prrrllel flOWI. Setting the parameter Y in formula (1.13) equal 
to unity, we obtain nx-2(1--n) 

J1=c nX allX [u’lm’(l-n) F1 (- au) - Fl (-a)] (2.1) 

Here we omit the first three arguments from the designations 

for hypergeometric functions for the sake of brevity; the analogous designations will be 

used below. 
The above relation becomes invalid for fi = a + i ; in this case logarithmic terms 

must be introduced into it pl]. As already noted, the parameter u > 1, so that the 

second of the hypergeometric functions appearing in the right side of Eq. (2.1) must be 
transformed in such a way that the argument u is replaced by its inverse u-1. By the 
standard procedure we obtain [21] 

Fl(-~o)=r(~~)r(-el) 

o-%n/(t-n) 

rw) + 

+ a-‘l”F 
-1 . . x(2-n) fi(i-n) - - &; *\ 

nn - - 4 x’ 2% (1 - n) ;-oj 

81=8(v=i)= 
RX-2(i -?a) 

2% (1 - n) 

where I’ denotes the Euler gamma function. If a + i < 3 or 

2+2/x 

we obtain from this the asymptotic representation 

(2.2) 

(2.3) 

W (- a) = ,,% _ z”z _ n) a-- a-n1(2-2n) 

r u/x) (2.4) 

We finally obtain the following expression for J, : 
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J1=&3 nx---o--n) @ 
?a% C &@-2n) ~~ (_ au) _ 

nk 
-nx-2(1-n) o -1’x + r ( 2 ;i:n*) ) r (- es yy;;;;'] 

If the inequality sign in formula (2.3) is replaced by its opposite, then two terms must 
be retained in the expansion in inverse powers of o of the hypergeometric function occur- 

ring in the right side of (2.2). Formula (2.4) changes accordingly, but, as was shown in 
[4], allowance for the thickness of the high-entropy layer for nL* 6 n makes no signifi- 
cant difference. 

3. Ax!$ymmetrfc flows. Setting v = 2 into relation (l.l3).we obtain 

II = e 
nx - (1 - 4 ul/x 

nx k [d”(I-“) Ft (- au) - Ft (- d] + 

+e 
2nx -“;i - n) 

[uzn:~:%n’Fs (_ aU) _ Fs (- a)j) 

F,(r)=F(;, ,2”+---;n) ; %(n+i)-(l--) ; =) 
x(1-g (3.1) 

As above, the hypergeometric function of the parameter u must be transformed into a 
form in which the argument is the quantity o-1. As a result. for 

(3.2) 

we obtain the asymptotic expansion 

F¶(_Uo) =nx _ 7 _ n) dx + r (A) r (- et) r-1 (i) u-n’(-) 

- (1 - n) 

and quite similarly 
et=e(V=2)=nXI~(1dn) 

2nx- (1-a) 

2nx - (1 - n) 

_ 
F3 (_ Q) = x(1--n) 

2 [nx - (i - n)l 

We note at once that the second term in the right side of the latter equation can be 

omitted in the analysis to follow, since it contains the largest negative powers of u. 
Moreover, it is easy to show that the term containing 

2nx-(l-4 
-- 

U W--“) Fa (- au) 

in formula (3.1) for J, yields the smallest contribution ; it will also be omitted from now 
on. We can now rewiite the expression for I, as 

Ft(__q_ 

1 
1 ( ~-_n ) b-n/(l-n) I 

-- 1 
n% -- x -nx-((1-n) 5 X -r w-w - r(l/%) -e~(nxlf;i-n)]u 1 
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Expression (3.11) becomes invalid for nLI < n ; in the case n = ns+ it must be replaced 
by a relation containing logarithmic terms 1211. However, as with the plane-parallel 

flows considered above, allowance for the high-entropy layer in the case of cylindrically 

symmetric flows is not important if ner < n; this conclusion follows from 163. 

4. The #h&pa of the :trermlined body. Substituting expansions (1.7) 

into formula (1.4), we find that 

asA+ &. 
On the other hand [S], 

rl= 915-y”, 91= p ; cy 9 
0000 

where J, denotes the stream function and pm the density and infinite distance upstream. 

Comparison of the various definitions of the variable q implies that 

x * -[mc-2(1-n)l/nx(l-n) 

h-&E $& 

( 1 ( ) 

J!!L 

[vnx-s(l-n)]/vnx 

“78 (44 
t 

Now let us turn to basic relation (1.10) which describes the distribution of the trans- 

verse coordinate. First of all we note that according to (2.3) and (3.2) the range of 
variation of the exponent n is restricted by the inequalities 

2 
v+2= n*<n<(n** = 2f2lx 

v+2+2/n (4.2) 
As the ratio x of the specific heats of the gas increases, this range becomes narrower. 

Now let us combine the above results and substitute them into (1.10). Introducing the 

notation 

k = vnx-2(1--n) ( N1_ gox 
x -m’ ( 2(;:“) +I) x 

xr - 
( 2(ik--n)) (4.3) 

and converting to the variables X, 91, we obtain 

(4.4) 

The streamlined body coincides with the zeroth streamline, so that its contour t = 
= rb (5) is of the form 

rb 
= cxn (ho _ _.!$ N;k’2-2n) NIX-‘) (4.5) 

Let us compare these results with those obtainable by applying the theory of small 

perturbations to the analysis of hypersonic gas flows (l-41. Formula (4.1) implies direct- 
ly that 

r = cxn [k. + -k’(r-*) x-kg:l~n 1 (4.6) 

It is easy toverify directly that expressions(4.4) and (4.6) for the transverse coordinate 
coincide as I#~ --t cc (as regards the principal terms,they are equal and do not depend on 

& ). This conclusion is quite legitimate, since the hypothesis of plane cross sections is 
valid for large values of the stream function and since the gas parameters in the high- 
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entropy layer must be associated with the corresponding parameters obtainable from the 
theory of small perturbations. This approach will be formulated more clearly when we 

consider the method of matching of the interior and exterior asymptotic expansions. The 
correction terms in the right sides of formulas (4.4) and (4.6) differ for small values of 

9, l 

It is usually assumed that the equation of the streamlined body conl.our is obtainable 
within the framework of the hypothesis of plane cross sections busing the law of piston 

expansion occurring in problems of unsteady one-dimensional gas motions. We shall 
determine it in a different way. namely by requiring that the entropy s along the gener- 

ating streamline assumes the value which results from gas compression at the front of 
the normal shock. In steady flows 

S 
2 (x - 1)X “a2 

max = (x + l)X+l p;-;’ 
(4.7) 

is the maximum permissible value,since the entropy behind an oblique shock must be 
smaller. In the approximation of small-perturbation theory we have 

at the shock front [l-4]. 
Combining Eqs. (4.7) and (4.8), we obtain 

~lb = (n2p)w-2~) 
(4.9 

Setting this Value into (4.6), we obtain the required equation of the body contour 

Tb = Cx” (h, +. ,Jv;k+z*) x-“) (4.10) 

The correction terms in formulas (4.5) and (4.10) are of equal degree at rhe x-coor- 
dinate, but. the coefficients occurring in them differ, The ratio N of these coefficients 

can be determined with the aid of Eq s. (4.3). As a result. 

iv = - vnx - 2u---n) r (‘W”, "j I‘(_ ..;--1”“;“‘) p-1 ($) 
vnx 

The argument of the second gamma function in the numerator of the fraction defining 

N is negative when the exponent varies in range (4.2); hence, N > 0. If n + n,, 
then N --t 1. This conclusion confirms the extremely simple prescription of IlO!: t!:e 
results of intense-explosion theory can be used without any alterations throughout the 
zone between rhe shock front and the body whose contour is generated by the trajectory 

of a particle whose entropy corresponds to gas compression at the normal shock in a 

steady hypersonic flow. The solution of the intense-explosion problem is therefore appli- 
cable to the caIculation of the par&meters of the high-entropy layer. The rule just for- 

pp>. 

mulated is illustrated in Fig. 1, which shows the 
shock have front, the particle trajectory, and the 
streamlined body contour. The hypersonic stream 
is associated with the domain of the solution of the 

intense-explosion problem where s < s,,, ; the 

z particle trajectories for s > s,,~ are absorbed by 

Fig. 1 
the body. 

For n = n, the constant h, = 0 and expansions 

(1.7) become invalid along with formulas (4.4) -(4.6), (4.10). However, the basic regu- 
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larities follow readily from the fact that in this special case we have pl] 

The correction term in relation (4.4) can be written as 

x -(X-1)/X 

( > i$ 
-2qx-l)l x(vt2) 

3 (n*V + ~l)(x-l)‘y (4.11) 

Transition from (4.11) to the correction term in formula (4.6) can be effected by 
shifting the stream function by the amount - n, 2 C2 ; precisely this value is dictated 

by Eq. (4.9). The indicated property underlies the analysis of the results of [8] and [9] 

carried out in /JO]. 
Let us consider the second limiting case where ?a + n,, and the ratio 

WC-2(1-v) 
2x (1 - n) 41 

The argument of one of the gamma functions occurring in the expression for N becomes 

minus unity; the quantity itself turns out to be infinite. We infer from this that the cor- 

rection terms in formulas (4.4) and (4.5) increase without limit for any fixed value of 
the x-coordinate as n-+ n,, . The conclusions of [S-7] whereby the thickness of the 
high-entropy layer decreases with increasing n is true in the following sense only. AS 
the z-coordinate goes to infinity, the thickness of the entropy layer decreases with 
increasing values of n from range (4.2). This statement is based on a consideration of 

the exponent of z in the correction terms in relations (4.4) and (4.5) ; hence, compari- 
son of two distinct solutions must be carried out for strictly defined values of a. On the 
other hand, if the r-coordinate is specified in advance, then the direct opposite of the 
above result holds true : the thickness of the entropy layer increases with increasing n, 
becoming larger than any prescribed number as n--t n.,., . The passage to the limit as 
z +oo in formulas (4.4) and (4.5) is nonuniform, which accounts for the fact demon- 
strated above. The nonuniformity of the limiting process is in turn due to the fact that we 

are considering the solution of the inverse problem of gas dynamics (a similar situation can- 

not arise in the direct problem). The character of variation of N-l for several values 

of the parameters Y, n and x is shown in 

Fig. 2. 
The equation for the streamlined body con- 

tour was first derived (in somewhat more 

complex form than (4.5)) in 1143; however, 

this author drew no qualitative conclusions 

from his results, remaining entirely faithful 
to the earlier studies of the authors of [5] 

and [6]. Moreover, paper 1141 does not con- 

tain explicit expressions for the distribution 
of the transverse coordinate inside the high- 

Fig. 2 entropy layer. 

5. The exterior flow zone. UP to now our study has been based entirely on 
Eq. (1.2) for the transverse coordinate. But the author of [6] derived this equation on the 
basis of qualitiative considerations, as a result of which his expression contains terms of 
differing order in J. To justify the above analysis and its implications we shall use the 
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well-known method of matching of exterior and interior asymptotic expansions whose 
principles are comprehensively discussed by Van Dyke p2] and Cole r23]. The theory 
of asymptotic expansions will also enable us to refine the values of all the gas parame- 

ters in the perturbed flow zone, including the values of the pressure p and of the compo- 
nents Do and v,. of the velocity vector. 

As our initial system we take the system of gas dynamics equations in the variables 
t, 0 interoduced by von h4ises. For a perfect gas we have 

8P t/V 
g-1 _=_r --_ a P 

w az ’ at px 
_ (), rv_.l ar 1 ar Vr -=-. 

a* PV, s 8t=Y, 

$Jx’+v;)+~$=“m~ (5.1) 

If the shock wave is of the form (1. l), then the Hugoniot conditions for the required 

functions at the shock 

can be written as 

r = cm, 

front 
$ = + pJ,_&Wn 

n2C2t-2(l-n) 

p = & bJco* i + n2(.J2r..2(l_n) P = $+-PO0 

2 
[ i-- n2C2z‘ 

2(1-n) 
vx=l$.& 

x + 1 1 + nsCsZz(t-n) 
1 1 v 

r 
Z-----~ 2 nCZ-(l-n) 

(5.2) 

x+i 00 i + n*&-Nbfo 

This immediately yields the entropy 

P I=-= 
PX 

(5.3) 

which depends solely on the reduced stream function ~,. For n = n+ we obtain 

2 (x -1)X vooe ?Z*Q? 

o = (x + i)x+l Q) px-’ n*W + $1 
(5.4) 

whereas within the framework of the small-perturbation theory in accordance with (4.8) 

we have 
S= 

2(x-i)” VfXZ n,W 

(%+1)x+1 p;-;’ VI 
(5.5) 

Shifting the stream function $1 by the amount - nf Ca transforms (5.4) into (5.5). 

This is precisely why it is possible [lOI to use the explosion analogy for the analysis of 
the hypersonic flow throughout the zone between the shock wave and streamlined body. 

Let us break down the entire perturbed flow field into two domains. The hypothesis of 

plane cross sections [l-4] must hold in the first approximation in the exterior domain 
bounded by the shock wave front. It is clear that the solution in rhe exterior domain can 
be expressed in the form of the expansions 

r = Cz” [rr (q) - n2C22-2(1-n)r* (q)] (?=$s) 
p=2_ x + 1 p,v,snvz-2(‘-n) [PI(q) - nv2z-2(1-n)p9 (I))] 
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ox =v, i-& i n2&+(‘-“) Iv,, (rl) - n’Oz-*(‘-*b* (q)] I 
y = -&- VmnCz-(‘-n) [vrl ((1) - n2ct~-*(f-“)v,i h)l 

r (5.6) 

Substituting these expansions into system (5. l), we derive the ordinary differential 
equations which the required functions of the variable ‘1 must satisfy. The system for 

the basic functions rums out to be nonlinear , 

v-1 dJQ %_z_-v n- 1 

‘.I T --‘1 dq vn a 
pl = q-8(‘-nwplX, 

dn 2 i 

vqdrl=n - n+i vrl’ vJa= w+i vrl* + % E (5.7) 

On the other hand, the corrections for these functions must be determined by solving 
the linear system 

u-l +a dvr2 dpl 3 (I -n) 
r1 -q--qq-=-(v-i)~ra+ vn Vms P=‘l -c(l-n)/vn * PI +FPs 

drz 
r~‘pq- = - & rX-lp~v,l $- - (v - i) PI-$ ra - r;-l $f- pa 

do 2 YE-- 
“‘I dq x+1 

3n-2 2 
+yrg--V x+i n 

1 
vx2= - 

%+I ( - vi1 + $- p2 -$- Pn + 2o,,u,J 

We note at once that the last equations of systems (5. ‘7) and (5.8) are detachable from 

the remaining equations, and that (5. ‘7) yields the solution (to within notation) of the 
problem of expansion of a piston in a gas initially at rest in the theory of one-dimen- 

sional unsteady flows. The latter problem in the range of n values of interest to us here 
has been investigated by the authors of p4, 25, 26, 271. The most important qualitative 
results were obtained in US] and 1171. where the inequality n < n, is deduced. On the 

basis of the analysis of system (5.7) carried out in these studies, we can write the asymp- 
totics of the basic functions as q -, 0 in the form 

=k+a1A’-‘+..., pl=ho+~T)+Kl~*-*+ . . . (0 = 2(;;n)) 
(5.0) 

pl= fz,‘le + ug$+@ + . . .) vrl = * A0 + a&8 + . . * 

where the coefficients al - as can be expressed in terms of the previously employed 
constants As and ho by means of the formulas 

as = - 
nx2(x-1) 

2[vnx-2(1-n)j[Ivnx-2(1-n)] x 

X (v-i)(i-n)Xi-“f 
1 

[vnz - (2 - x) (1 -n)][(v-l)nx-2(4-n)] 
nx2 

20-n) ,,--+ 
p--k 0 

I 
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1 

x (1 
04 = h, , as = - ---I (x+ 1) 

2vnx 
~z-‘~-(x -l)‘x 

0 Cl 

Making use of relation (4.6). we can verify that the first of the above formulas corre- 
sponds exactly to Eq. (1.8). 

It is convenient to begin analysis of system of linear equations (S. 8) by first eliminat- 
ing the density correction pa . This yields two differential equations and one final rela- 
tion for determin~g the functions F2, p2 and ~,,,namely 

v-1 dpz dVF2 
‘1 dr)---tly&-i-=- 

dpl 3(n-4) 
@-~)d’lFa- vn vr2 

dra do 
T&j-= 

-4(1-n)‘vn PI* 2 v-l drl 1 drl 
x- m’l”sl K-- ,;-I dq 1 

--Fz--- pz (5.10) 
~1 drl 

c (v - 11 
I 

?!a -t 

I _4fl_,+n ‘?pl” dn 2 
=--‘1 

rlbx, 

x p1 dg- VW+11 11 

It is clear from this that the general solution of the initial system can be constructed 
with the aid of the two linearly independent integrals of the homogeneous equations 

corresponding to (S. 10) and a particular solution of the nonhomogeneous equations. As 
tl -N 0 the asymptotic expansion of the first linearly independent solution of the homo- 
geneous system corresponding to the initial system hecomes 

rs’r=z Aqk’“” + . . ., p~=Aa+..., p4 = A8q2(l-n)‘vnx + . . ,, V,# = klf’“n+ . . . 

with the constants (5.11) 

n? _ _ kx (x -1- 1) ~v-l,(“+l)r” A4 k (x i- i) 
A1 - n&-i) 0 ‘0 ’ --- At n (x - i) ~$“$‘” 

A.1 _=fx+l)lxf3n-vvn-2)+2(i-n)l k_v~x-Z(l-n) 
AI Znx c 

- 
x 1 

For the second linearly independent solution of the aforementioned system we obtain 
vnw+?ft-?I) 

r2=B1+.... pa=aq+ . . . . pr==B3~ 
YRY 

+ **.t v,+J - B4 f . . t (5.12) 

where the coefficients are given by 

B= (I - n) (x + i) (ion - vn - 6) kl_v 
2vnZ 0 

As regards the particular solution of initial system (5. X), it is given by the formulas 

r3 = G&a(x+') + e . ., fi = Gap 

pz =: C.&q-W-” + . . ., v,2=C4q-a+. . . i 
B=+-&--, -4 \ 

(5.13) 
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,111 the constants appearing in these expressions are related to L, and ho by the equa- 
tions 

Cl== 
n(5c-i) 

(x + 1) [vnx. - 2 (i - n) (% + f)] 
&l-‘h;ti% 

0 * cs= - + $f” 

c4 - . 

The constants &, and ho can be found by numerical integration of system of nonlinear 

equations (5.7) ; the solution of linear system (5.10) yields the values of the coefficients 
A1 and B,. In order to render the problem fully determinate we must specify the initial 
values of all the required functions. It is clear that these can be found by expanding the 

Hugoniot conditions (5.2) at the shock wave front in a series as E + 00 . As a result we 
find that for ‘1 = i the basic functions are given by 

rl = p1 = pt = V, = Q.1 = I (5.W 

and their corrections by 
r2 = p = 0, pa = 0, = l+l = 1 

Results obtained by numerical solution of Cauchy problem (5.14) for Eqs. (5.7) appear 

in monograph /28] (where the self-similar variable I was used as the independent vari- 
able of integration). 

8, The tntsrfot flow zone, The principal term in the expansion of the func- 
tion ps as r) -F 0 is given by the third equation of (5.13). Comparing it with the corre- 
sponding equation of (5,9), we see that the difference 

a, - n2C2Cg+(l-n)q-a(l-n) I vn 

in the interior flow zone occupied by the high-entropy layer must consist of terms of the 

same order of smallness. This immediately implies that either the stream function rp 
or the proportional quantity $r must be taken as the interior variabie. The singularities 
in the remaining correction functions r,, pa and u,aare weaker than the singularity in 

the function Ps. In view of this property, we seek the solution of Eqs. (5.1) for the entro- 
pic layer in the form 

vnx-2(1--n) 
T = Cz” [R, (t/Q + x- *i R2 W f 

P= &p,v,%w~-~w [ P, (qll) + x-f(14P2 (IpJ + 

+ f’“Ps ($1) + x- 
vnx+Nl;n)(x-1) p, ($l), 

2(1-n) -- 

P= SP”” x [PI tliq + t-2ft-nf p2 WI 

Y, = ---$+nCx-fI-n) If,, (qq + x- r 
Substituting asymptotic expansions (5.9), (5.11) and (5.13) into expressions (5.6) for 

the gas-dynamic parameters in the flow zone contiguous with the shock wave front, we 
obtain the conditions which the required functions must satisfy as $r + 00. This pro- 
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cedure is standard in the method of matching of exterior and interior asymptotic expan- 
sions g2, 231. Thus, as & + 00 we have 

PI-t (’ $‘ql , Pa--+- 
% (1 -n) (3% - 2) 

(%+I)[vn%-2((1--)] 
h(s+t~~%,,‘cs$;-e 

W-h~* 
T&v -q*-1) 

Q’+ -ph 
I ( 

We note that limiting relations (6.2) generally do not depend on expansions (5.12) ; 
allowance for the latter is important only in determining the terms of higher orders of 

smallness occurring in the expressions for the parameters in the entropy layer. 

Now let us turn to system (5.1). Substituti~ of expansions (6.1) into the Euler equa- 
tion projected onto the +-axis yields 

dP1 o 
w= ’ 

dPa o 
-= ’ 

a;-‘%$s = (1 - 4 (3% - 2) vrz 
VT&% 

(6.3) 

The condition of conservation of entropy along the streamlines is best taken directly 

in the form (5.3). Making use of the latter. we obtain 

PIP;” = [ nv + qp-n)‘“n], P, - PIP, / Ply = 0 (6.4) 

From the third equation of system (5.1) we obtain 

dRx o d& x--l 
dvgl= ’ 

II;-‘P,Vzlx = . 
vi%+ 1) 

The equation defining tl,e slope of the streamlines implies that 

Finally, the Bernoulli integral yields the equations 

v,=1, 
2% 

T/‘xlvxs i- (% + 1)” 
- nVP, f P* = 0 

(6.5) 

(6.6) 

(6.7) 

The above system of ordinary differential equations contains a series of finite relations, 
and is therefore readily integrable. It is more difficult to establish the form of the func- 

tions Rs and p, which are defined by the integral 
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x s U-Jnfw+I [I + (n2p)-l q-1 1% &&, LL = a(l-n)f~ $1 
The above form of the integral corresponds exactly to integral (1.14) used in our pre- 

vious calculations. We also note that determination of the arbitrary constant occurring 

in the function Pa requires a more precise specification of its limiting value as*%+ m 

than that afforded by the present approximation* 
To this end we must include the next term in the expression for the pressure in the 

external flow zone ~ntiguous with the shock wave, However, it is unnecessary to solve 

the complete system of equations for the functions in the third approximation, since the 

order of the term in question in the pressure expansion can be determined by means of 
simple estimates, Thus, the solution of system (6.3)-(6.7) which satisfies limiting con- 

ditions (6.2) as $~r --f 00 becomes 

R 1 = L 

Here 

Substituting the expressions for the functions fir and Ra into the first equation of (6. I), 
making use of relation (1.8) for converting from the constant &to the coefficients g, 

and he, and comparing the resulting relation with (4.41, we conclude that they are exactly 
coincident, The conclusions drawn from the consideration of integral (1.2) have now 

been fully justified within the framework of the matching of exterior and interior asymp 

totic expansions. This method has enabled us not only to carry out a more rigorous 
mathematical analysis of the stream parameters in the entropy layer for inverse gas- 

dynamic problems, but also to refine considerably our picture of the layer itself. Indeed, 

the above corrections of the pressure, density, and velocity vector components could not 

have been found by analyzing the self-similar solutions of the piston expansion probiem. 
We note that asymptotic expansions for the exterior and interior flow zones were pre- 

viously constructed by the authors of &5], but their formulas for the velocity vector differ 
from our own ; in fact, one of the terms which they discard from the expression for the 
transverse component of the velocity vector is of higher order of magnitude than the 
term retained, However, this error has no effect on the form of the function r (36, 9). 
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ANALYSIS OF TRANSONIC FLOWS PAST 

SOLIiX OF REVOLUTION 

Phlhl Vol. 34, NL3, 1970, pp. 5UR-5’13 

Iu. M. LIPNITSKII g”(l Iu. 13. i.hSl ITI’S 
( hloscow) 

(Received July 1. 196Y) 

We present a numerical iterative scheme for solving gasdynamic problems by the ascer- 

tainment method suitable for computing uansonic flows past solids of revolution. A short 
description of the numerical procedure is followed by the results of rolllpu:ing flows past 

a sphere, an ellipsoid, a combination of a sphere and a cylinder of varyill;! aspect ratio 
and a combination of a sphere and a cone, for various supercritical values or ‘?e hIach 

number. Mach number level curves constructed illustrate the flow in the local supersonic 

zones. their configuration and change, and the position of the shock waves. 

Numerical methods for analyzing transonic flows in which closed supersonic zones 
appear are only beginning to be developed. Chushkin p] used the method of integral 
correlations to analyze the flow past an ellipsoid of revolution for one particular case. 

namely when the Mach number of rhe incident flow is equal to unity and the influence 
domain is bounded do\instrealn by the limit characteristics. Below we study the possibi- 
lity of computing transonic flows past solids of revolution using the ascertainment method. 
The scheme of implicit differences utilized here is described in detail in @], where it is 

used to solve a simple problem of the Lava1 nozzle. 

1, To apply the ascertainment method we take the equations of unsteady motion of 
a perfect gas in cylindrical coordinates Zy. They can be written in abhreviated form as 

$-+A$-+B+F=O 

Here 2 and F dre vectors (columns) with the fr)Il~)wing colnponents 

(1.1) 


