Hypersonic flow past a delta wing 481

Computations of pressure distribution on the wing, and the shape of the shock wave are
presented in Fig, 6 for several values of the angle ¢ and the angle of attack, The graphs,
which are constructed form the first approximation, permit to draw the conclusion that
the pressure change is insignificant along the span of the wing, The principal change is
observed near the plane of symmetry, where for decreasing v an increase in the values
of pressure takes place,

We note that the theory is applicable to flows without internal shocks, therefore the
angle ¢ can change in a relatively narrow range,
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Many results in the theory of hypersonic flows past slender bodies are based on the ana-
logy with unsteady flows in a space with one fewer dimensions, This analogy was devel-
oped by the authors of papers [1- 41, However, its use for calculating gas parameters near
the surface of a body often entails considerable errors, For the purpose of accurate deter-
mination of flow characteristics throughout the domain, the authors of [5~9] developed
the notion of a high-entropy layer which contains estimates of the required quantities
along the streamlines intersecting the front of the strong bow shock wave, Entropy layer
methods have proved especially convenient in dealing with inverse aerodynamic problems
in which the position of the shock wave is assumed to be given and the shape of the body
must be determined in the course of solution, Specifically, the authors of [6—9] investi-
gated the problem of the body shape associated with the motion of a gas due to an intense
explosion,

The analysis of the results of Sychev and Yakura carried out by the authors of [10]
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indicates that the explosion analogy holds in the first approximation in calculating hyper-
sonic flows throughout the zone behind the shock wave front, including the gas layer
adjacent to the body, In determining the body contour it is sufficient to choose correctly
the entropy along the particle trajectory which is its generatrix, Since the flow element
past the body must intersect the shock wave front at a right angle, the entropy is obtain-
able by means of the Hugoniot relations for the normal shock, The use of the results of
the intense-explosion theory developed by Sedov [11, 12] and Taylor [13] does not entail
any corrections of the latter,

The present paper concerns the more general inverse problem in which the shape of
the shock wave is described by a power function of the coordinates measured in the direc-
tion of the flow velocity at infinity, The authors of [14, 15] investigated the problem
without analyzing many of the important qualitative properties of flow in a high~entropy
layer, We show that determination of the body contour from the particle trajectory with
an entropy value determined from the relations for a normal shock in a steady flow gene-
rally yields incorrect results, Moreover, in the limiting case noted in [6] the coefficient
of the correction term occurring in the equation of the contour becomes infinity, The
correction due to the high~-entropy layer can increase without limit for a fixed value of
the longitudinal coordinate, The intense-explosion theory (most important for practical
applications) constitutes an exception from this standpoint,

1, Ancillary transformations, Let us consider plane-parallel and axisym-
metric steady gas motions, We assume that the Mach number at infinity ( M, ) is infi-
nitely large and denote the axes of the Cartesian or cylindrical coordinate system by x
and r; the z-axis is directed along the velocity vector of the unperturbed flow,

we assume that the shape r = r; (z) of the shock wave is prescribed and that the
contour of the streamlined body must be determined in the course of solving the resulting
inverse problem, Following paper [6], we set

ry = Cazn (1.1)

where C and n are arbitrary constants, The subsequent results are based essentially on
the analogy between hypersonic flow past slender bodies and unsteady flows in a space
with one fewer dimensions, From the results of [16, 17] we conclude that
2/ (v +2)=n,<n

where v = 1 for plane-parallel flows and v = 2 for axisymmetric flows, The value

= n, corresponds to the intense-explosion problem solved by Sedov [11, 12] and
Taylor [13], The problem of a piston expanding in a gas can be solved only if the strict
inequality n, < n is fulfilled, This inequality will be the basis of our entire analysis,
since the problem of using the explosion analogy for calculating hypersonic gas motions
has already been investigated [10],

Paper [5] is devoted chiefly to the derivation of the distribution of the transverse coor-
dinate near the surface of the body when the von Mises variables are taken as the inde-
pendent variables, We have

1 —Vy i
n w—1 r 4% nC? 1.2
r=Cz {i + T SG“" Ty e M) G) d“} (1.2)
1

Here % is the Poisson adiabatic exponent, the function H is equal to the ratio of the
pressure p in the perturbed-flow zone to the pressure behind the shock wave, and
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Formula (1, 2) is not valid for small z, since the perturbations of the velocity fields
turn out to be finite and cannot be described in terms of a theory hased on the analogy
between steady hypersonic flow past bodies and unsteady one~dimensional flows, Con-
versely, the formula becomes more exact as the Z-coordinate increases; we can there-
fore simplify it by taking its limit as  — oo,

To this end we make use of the relationship between the variable % in the interval
from the right side of Eq. (1.2) and the self-similar variable A used by Sedov [18].
Denoting the ratio of the velocity » in the perturbed-flow zone to the velocity behind
the shock wave front by f, we can write [6]

"=e‘p[“”§(u+1 f~)ir]

Let us introduce the function g defined as the ratio of the density p at an arbitrary
point between the shock wave and body to the density obtained as a result of intense
shock compression of the gas, The functions f and g and their first derivatives are rela-

ted by the expression (f %41 7«)%+(§{ v——i f)g 0

which appears in monograph [19], This relation is readily transformable into a form
which enables us to compute the integral occurring in the definition of the variable 7.

Hence
' 2 v- i
1= v (S )
The adiabaticity integral [19]

~IH1-1)/ 1-~n)/v w1 2(1-n)/n
13(" X ")"‘g“ n) ﬂh[ 1( - Av—"f)] ____gx
enables us to simplify the expression for the variablen still further,
g" wn/(2-2n)
n= (T) (1.4)

where by definition & (A) = H (v). The above relation allows us to transform formula
(1. 3) for the function & into
G = [g* + n*C% "™ py Y (1.5)

Converting from the variable 7} to the variable ) in Eq, (1,2), we obtain
A

V- 2 ~s 1/
r=Can {1 + vgx 2 (M) G (z, V) [1 - = fa)* n C”‘g'(’l‘f‘f’ "’J dx} (1.6)
1

The surface of the expanding piston corresponds to the nonzero quantity A = A, in the
self-similar solutions familiar to us from the gas dynamics of one-dimensional unsteady
flows, As A — A, , the functions f, g and h are given by the asymptotic formulas

f=fo=Yam+Dhe+ ..., £=2g(h—h)MtVmx20m
h=hyt ... (1.7)

The constants A,, g4 and hg occurring in these expressions are interrelated by the
equation
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v-1 __ nx (% —1) ~1/x ( go® \ [¥nx-2(1-n)}ax(1-n)
ho )

O T T D=0 =m0 (1.8)
For z — oo and finite values of the difference A — A, the function G — g1, As A — A
we have g — 0 and A — hy, as required by asymptotic expansions (1. 7), Hence, asA —
— Ao and z = oo the second of the two terms appearing in square brackets in the right
side of Eq, (1. 5) may turn out to be larger than the first, while for A = A, we have

G = (n*C¥ho)~V% 2U1-n)/x
This implies that the ratio ¢ / z —» 0 as x — o for all values of the difference A —
— ho. Making use of this fact, we can write out the expansion
[1 2 e ‘2“‘")}:6]—% =14 2 rcrg2(t-mipg + (.9
=+ 1) =l rraye A
In order to find the distribution of the transverse coordinate near the generatrix of the
body at large distances from the head of the shock wave, we must use only the first term
of series (1, 9) in computing the integral in the right side of (1,6). This operation is
equivalent to neglecting the deviation of the longitudinal component v, of the particle
velocity vector from the velocity ¥, in the unperturbed zone where the gas temperature
is zero, It is easy to show that the remaining terms of series (1, 9) make a contribution
of lower order in z to the integral in question, In the first approximation this yields
A 1+
r=Cz" {1 +v 5 Al [¢% 4 mrCiz ) dk} (1.10)
The direct expansion of the integrand for large values of the coordinate now becomes

impossible, Hence, we write , 1

(W-1g 16% + neciz 20"k ap =

i
Aete A 1
= ( § + g ) (W-1g [g% + n2Cz 3R] Xdhy =Ty T2
1 MFe
where the parameter e must be chosen in such a way that, on the one hand,
2% (ho + €) > 02227301 (ho -+ €) (.11)

and on the other g «& 1. By virtue of condition (1, 11), expansion of the integrand in Js

is permissible, Making use of this expansion, we obtain
L

Jy= -1; (o+e)z—1]— —,1; mCiz 0\ AMlgT hdh 4.
1

To compute the integral in Jy we first transform the sum,

! g* + ngczz-g(]_—n)h — g;x (k — M)-l/og*u (1 + m)
ere
o vax — 2 (1 —n)
p=gy 0 — M) mChea0, 0=

m = n*C? 20 [go* (A — 4a)'h — hog"]
The coefficients go and hy must be taken from expansions (1,7), Making use of these

expansions, we can readily show that m <€ 1 for large values of z and 0 A — Ao < &,
Taking account of the former inequality, we find that in the first approximation
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A
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A2
Let
PO hoe MM =g, (h—Afe =u (t.12)

Recalling inequality (1.11) which the parameter e satisfies, we see that ¢33 1. This
estimate plays a very important role in the discussion to follow. Converting from inte-
gration over ) to integration over z by means of the second formula of (1,12), we can
express J, in the form

_.Beslfx <S+R) {[M +eu] v-1,,0- 1+1/x (1Tdc-u)T/"-} (1.13)

The subsequent transformauons of the above expressions are based on the familiar
expression [20] for hypergeometric functions 7 (a, f, ¥, 3),

¢ 1P-ldy u?
§W=Ti‘(¢, B, 148 —ou (1.14)

In using formula (1,14) to compute J, it is convenient to consider the plane-parallel
and axisymmetric motions of the gas separately,

2, Plane-parallel flows, Setting the parameter v in formula (1,13) equal

to unity, we obtain nt — 2 (1 = n)
Ji=¢e ———— i/ [u'/.n/u-n) F1(— ou) — F1(—0)) (2.1)

Here we omit the first three arguments from the designations

1 n 2—n
F'(‘)=""(‘u‘- 2d—=n ' TA—n) ")

for hypergeometric functions for the sake of brevity ; the analogous designations will be
used below,

The above relation becomes invalid for § = a + 1 ; in this case logarithmic terms
must be introduced into it [21], As already noted, the parameter ¢ 3> 1, so that the
second of the hypergeometric functions appearing in the right side of Eq, (2, 1) must be
transformed in such a way that the argument o is replaced by its inverse ¢-1, By the
standard proccdure we obtain [21]

9 __ 6 en/(1-n)
P =1 (5= ) T -0 "y +

gL xe—mF20—n 1)
+mc—2(l—n)° F(u'—e" 2 (1 —n) -y @.2)
nx—2{1 —n)
01=0(v=1)= A —n)
where I' denotes the Euler gamma function, If a4 1 < B or
2+2/%
N Nee =TT 5 0 3+2/% 23
we obtain from this the asymptotic represemrtation
n»® 2 6—71/(2—271)
Fi(—oq)= m Mtr (_JT{—_).) I'(—o) Tam (2.9

We finally obtain the following expression for J, :
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— w gl [un/(z—zn) F1(— ou) —
_ nx ( ‘n/(z 2n)
A —my ¢+ Tlgg= ) ) T'(—8) Fam— ]

If the inequality sign in formula (2, 3) is replaced by its opposite, then :wo terms must
be retained in the expansion in inverse powers of o of the hypergeometric function occur~
ring in the right side of (2,2), Formula (2.4) changes accordingly, but, as was shown in
[4], allowance for the thickness of the high-entropy layer for n,, < n makes no signifi-
cant difference,

3, Axisymmestric flows, Setting v = 2 into relation (1, 13), we obtain

Ji=e -"—”—_,%:fl o/* {xo[u"’“-") Fa(—ou) — Fa(— o] +
e [ 2nx—(1—)-n) 9
x(1—-n — _ .
+em u Fa( ou) Fs( G)J}
e=rl i)
1 2ax—(1—n) n(41)—1—n)
Falz) = (7’ x({—n) ° ®(l—n) ! z) @31

As above, the hypergeometric function of the parameter ¢ must be transformed into a
form in which the argument is the quantity o~1. As a result, for
"<"u—2+1/,¢ (3.2)
we obtain the asymptotic expansion

Fuo) =y o + T () T o o (o

nx— (1 —n)
Bs=8(v=2=""Jm—7%
and quite similarly

(1) — (L —n)\ T (— 209 — Sy
2nk — (1 —n) __yx (x n+1) —( —n) — 209 x(1—n)
Fa(— = s . T ()
iy vy T A S % (L —n) T (/%)

We note at once that the second term in the right side of the latter equation can be
omitted in the analysis to follow, since it contains the largest negative powers of o.
Moreover, it is easy to show that the term containing

oanx—(1—n)
u x(1—n) Fs (—— csu)

in formula (3,1) for J, yields the smallest contribution ; it will also be omitted from now
on, We can now rewrite the expression for J, as

A —n) 5 -
—(—n = ge=—
J1=5————-—'nn — o {M[ul ™ Fo (— ou) —

I.-a
~—

_ L ' -nf(1 n)] nx% -
—nn—n(’;—-n)d i —P(l—-n>r(_e"‘) 70 ) 2 mm—(—m]°
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Expression (3.11) becomes invalid for n,, < n; in the case n = n,, it must be replaced
by a relation containing logarithmic terms [21], However, as with the plane-parallel
flows considered above, allowance for the high-entropy layer in the case of cylindrically
symmetric flows is not important if n,, < n; this conclusion follows from [6],

4, The shape of the streamlined body, Substituting expansions(1,7)
into formula (1.4), we find that

gox vn/3(1-n) vax/[vax-3(1-n))
n={5)"" =)
as A == A,.
On the other hand [6], v
— x—vn‘ )y == ——
n ‘pl ‘l 1 PooVoo c’ ‘b

where 4 denotes the stream function and peo the density and infinite distance upstream,
Comparison of the various definitions of the variable 1} implies that

A — gox ~[vnx-2(1-n))/3%(1 -n) P [vnx-2(1-n))/ynx
0= ho "

Now let us turn to basic relation (1,10) which describes the distribution of the trans-
verse coordinate, First of all we note that according to (2. 3) and (3, 2) the range of
variation of the exponent n is restricted by the inequalities

_24-2/%
n e =372/ (4.2)

As the ratio % of the specific heats of the gas increases, this range becomes narrower,
Now let us combine the above results and substitute them into (1,10), Introducing the
notation

e 20N N s Na=T(gpy +1) X

(4.1)

2 n
vz T "=

k__\ra (L) 4.3
><I‘(— 2(1__"))I‘ — (4.3)
and converting to the variables &, Yy, we obtain
Kk nookia _ ~vn/(3-3n)
r= Cz"{l.o — o= Nf¥ g "[N, — (n*CY) X

vn .wm+20—n), 1911 4 HL-)/v )
X0 (1 T T e} @

The streamlined body coincides with the zeroth streamline, so that its contour r =

= Ty (z) is of the form kA -
r, = Cz" (7\.0 — _vkn. Nlma ™ Nyz k) (4:5)

Let us compare these results with those obtainable by applying the theory of small
perturbations to the analysis of hypersonic gas flows [1—4], Formula (4,1) implies direct-

1y th ~k/(a-
y that r— Can [M + (go ) k/(2-3n) z’k\lﬂflm] (4.6)

It is easy to verify directly that expressions(4.4) and (4,6) for the transverse coordinate
coincide as{; — oc (as regards the principal terms,they are equal and do not depend on
Y1 ). This conclusion is quite legitimate, since the hypothesis of plane cross sections is
valid for large values of the stream function and since the gas parameters in the high-




468 0.S,Ryzhov and E, D, Terent'ev

entropy layer must be associated with the comresponding parameters obtainable from the
theory of small perturbations, This approach will be formulated more clearly when we
consider the method of matching of the interior and exterior asymptotic expansions, The
correction terms in the right sides of formulas (4, 4) and (4, 6) differ for small values of
Pro

It is usually assumed that the equation of the streamlined body contour is obtainable
within the framework of the hypothesis of plane cross sections by using the law of piston
expansion occurring in problems of unsteady one~-dimensional gas motions, We shall
determine it in a different way, namely by requiring that the entropy § along the gener-
ating streamline assumes the value which results from gas compression at the front of
the normal shock, In steady flows

2 2= Ve %)
pK max (7(+1)x+1 p:(n—l

is the maximum permissible value,since the entropy behind an oblique shock must be
smaller, In the approximation of small-perturbation theory we have

2
®+1

Smax =

pmvw2n26‘2\pl—2(1—n)/vn’ p= :—_t——: Poo (48)

2
p= mpmvwznzc%_zam) —

at the shock front [1—-41],
Combining Egs, (4, 7) and (4, 8), we obtain

Yip = (nzcz)vn/(z-zrx) (49)
Setting this value into (4. 6), we obtain the required equation of the body contour
ro = Cx (Ao 4+ Ny ¥E 57Fy (4.10)

The correction terms in formulas (4, 5) and (4, 10) are of equal degree at the Z-coor-
dinate, but. the coefficients occurring in them differ, The ratio N of these coefficicnts
can be determined with the aid of Eqgs. (4.3). As a result.

N = _wm——Z(i—n)F(vn‘—{—Z(iﬂn))l‘(_ vnx—2(1——r:.)‘)r_1( 1 )

vnx 2(1—n) 2 (1 —n) \ %

The argument of the second gamma function in the numerator of the fraction defining
N is negative when the exponent varies in range (4,2); hence, N > 0. If n — n,,
then N — 1. This conclusion confirms the extremely simple prescription of [107; the
results of intense-explosion theory can be used without any alterations throughout the
zone between the shock front and the body whose contour is generated by the trajectory
of a particle whose entropy corresponds to gas compression at the normal shock in a
steady hypersonic flow, The solution of the intense-explosion problem is therefore appli-
cable to the calculation of the parameters of the high-entropy layer, The rule just for-
mulated is illustrated in Fig, 1, which shows the
shock wave front, the particle trajectory, and the
streamlined body contour, The hypersonic stream
is associated with the domain of the solution of the
intense~explosion problem where § < Smax ; the
particle trajectories for § > Smpax are absorbed by
the body,

For n == R, the constant A, = 0 and expansions
(1.7) become invalid along with formulas (4. 4) ~(4. 6), (4. 10), However, the basic regu-

Fig. 1
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larities follow readily from the fact that in this special case we have [21]

Pl i wn2(0—n) . i\ % n2C {[1 L » ](’“"”‘_1}
(T' 2(1—n) ' 2(0—n) 'nC*)] x—1 ¥ ne*C?
The correction term in relation (4. 4) can be written as

X\ -(x-1)/% —~2v(%x-1)/x(v+2)
(g,jc ) z (n,2C? + )™ /* (4.11)

Transition from (4,11) to the correction term in formula (4, 6) can be effected by
shifting the stream function by the amount — n,2 C? ; precisely this value is dictated
by Eq. (4. 9). The indicated property underlies the analysis of the results of {8] and [9]
carried out in [10],

Let us consider the second limiting case where » — n,, and the ratio

vax —2 (1 —w
—'z'r(ri:,r)‘ -1

The argument of one of the gamma functions occurring in the expression for ;V becomes
minus unity ; the quantity itself turns out to be infinite, We infer from this that the cor-
rection terms in formulas (4, 4) and (4, 5) increase without limit for any fixed value of
the z-coordinate as n—> N4, . The conclusions of [5—-7] whereby the thickness of the
high-entropy layer decreases with increasing n is true in the following sense only, As
the T~-coordinate goes to infinity, the thickness of the entropy layer decreases with
increasing values of 7 from range (4.2). This statement is based on a consideration of
the exponent of 2 in the correction terms in relations (4,4} and (4. 5); hence, compari-
son of two distinct solutions must be carried out for strictly defined values of 2, On the
other hand, if the r-coordinate is specified in advance, then the direct opposite of the
above result holds true ; the thickness of the entropy layer increases with increasing n,
becoming larger than any prescribed number as n — n,, . The passage to the limit as
& — oo in formulas (4.4) and (4. 5) is nonuniform, which accounts for the fact demon-
strated above, The nonuniformity of the limiting process is in turn due to the fact that we
are considering the solution of the inverse problem of gas dynamics(a similar situation can-
not arise in the direct problem), The character of variation of N™! for several values

of the parameters v, n and % is shown in

“ "7 | [ v+ Fig. 2.
i : ) The equation for the streamlined body con-

S ”l,';g \’ z 12 tour was first derived (in somewhat more

1 \ oy \_ 14 complex form than (4, 5)) in [14]; however,
o5 \ \ this author drew no qualitative conclusions

167 &\ 167 \\\ from his results, remaining entirely faithful

N to the earlier studies of the authors of [5]
\\ \ \ and [67. Moreover, paper [14] does not con-
25 a6 a7 a tain explicit expressions for the distribution
of the transverse coordinate inside the high-

Fig, 2 entropy layer,

5. The exterior flow zone, Up to now our study has been based entirely on
Eq. (1.2) for the transverse coordinate, But the author of [6] derived this equation on the
basis of qualitiative considerations, as a result of which his expression contains terms of
differing order in z. To justify the above analysis and its implications we shall use the
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well-known method of matching of exterior and interjor asymptotic expansions whose
principles are comprehensively discussed by Van Dyke [22] and Cole [23], The theory
of asymptotic expansions will also enable us to refine the values of all the gas parame~
ters in the perturbed flow zone, including the values of the pressure p and of the compo-
nents p; and v, of the velocity vector,

As our initial system we take the system of gas dynamics equations in the variables
z, ¥ interoduced by von Mises, For a perfect gas we have

pale %0 p oo 4 o b
a az z p¥ ! ay pry ' dz T v,
L orpon i P _y,
7O+ + T 5=V (5.4)

If the shock wave is of the form (1, 1), then the Hugoniot conditions for the required
functions at the shock front "
¥ = < pooVovazm

can be written as

2,2,.-2(1-n)
r=Cz", “ﬁ‘i"w"w‘ﬁf-—zwm P=£“i‘:—f’m
[ 2 n’Cl 20-m 2 nCz-(1-m) ®.2)
=V |l —%FT ] F nCiH) ] R el W Srp e (=)
This immediately yields the entropy
P 2 (% —1)* Voo ntC? 5.3)
P (e + )™ p n3cd 4 g1-mIivn '
which depends solely on the reduced stream function ,. For n = n, we obtain

_ 2= Vo' et (54)

T 1)**1 px-1 ny*C? + Y1
whereas within the framework of the small-perturbation theory in accordance with (4.8)
we have oo 2 (% — 1)K V002 n2C?
(6 4 1)%*1 p:o—l ™

Shifting the stream function ¥, by the amount — nZ C? transforms (5, 4) into (5, 5).
This is precisely why it is possible [10] to use the explosion analogy for the analysis of
the hypersonic flow throughout the zone between the shock wave and streamlined body,

Let us break down the entire perturbed flow field into two domains, The hypothesis of
plane cross sections [1=47] must hold in the first approximation in the exterior domain
bounded by the shock wave front, It is clear that the solution in the exterior domain can
be expressed in the form of the expansions

(5.5)

r= Cz"[r1(n) — a2C*2~21-")p, ()] (n= W )

zvn
2
P= 3T PV C ™ [pr(n) — €220 py (1))

1
b= S Punlia(m) — 20, (1)
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v, =V, {1 - 42-1 nCrz 3" [y () — n3C: 2N () l}

2
2= 7 VeohCx ™ [, (1) — 0373y, () (5.6)
Substituting these expansions into system (5, 1), we derive the ordinary differential

equations which the required functions of the variable 5 must satisfy, The system for
the basic functions turns out to be nonlinear ,

-1.d;1 4o,y n—1 T .. U ek
r l—d'q N =" " vy PA=1 Mk, n' T m dan - vix41)
dr1 2 O P
Mg ST T YT R ("'1""'”9:) ®2

On the other hand, the corrections for these functions must be determined by solving
the linear system

v-1 P2 dv,, 3(1 —n) v

dpy e *p1
=—(‘V—1)"an—r|+ g Pr=1] (1 n)/vnplu_i_ 4 P

S T T vn
dra 2 . dn dr1 1 4n
l‘;’lplw=—u—+—1r: lplvxlﬁ-—(v—i)pl-ﬁ-’]—n—r; —d_"i_

drg 2 dr1 3n—2 2
R e e e T

1 2 % Xp1
Vg = e —vy + -E- P’——pl' P+ Zvnvr2 (5.8)

We note at once that the last equations of systems (5, 7) and (5, 8) are detachable from
the remaining equations, and that (5, 7) yields the solution (to within notation) of the
problem of expansion of a piston in a gas initially at rest in the theory of one-dimen-
sional unsteady flows, The latter problem in the range of # values of interest to us here
has been investigated by the authors of [24, 25, 26, 27], The most important qualitative
results were obtained in [16] and [17], where the inequality n < n, is deduced, On the
basis of the analysis of system (5, 7) carried out in these studies, we can write the asymp-
totics of the basic functions as vy —» 0 in the form

! —
=M+a1kl‘o+..., pr=ho}+ aan+aaﬂ’"°+ \{}: 2(:’”‘"))

®-+1
pr=am® + asn*® ..., v, = —2+_ Ao+ amt® ...

(5.9)

where the coefficients a; — a¢ can be expressed in terms of the previously employed
constants Agand ho by means of the formulas

e (w — 1) . (1—n)(e+1) ,,
e Y T e L R S
nx? (v — 1)
=" Fvx—2(1 —n)] Cvix—2 (1 —m)] X

[vnx — (2 —%) (1 —n)] [(v— 1) nx — 2 (1 — n)]}hﬂl-ﬂ) = 1

nx? 0

X {(v—i) (1 —m) A+
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1
< (—m) {2 1) 5,
ag —= hﬂx , G5 = T kg ho(x 1Y%

(== m—20—n)] .,
%= S vk — 2 (I —)] ho k"
Making use of relation (4, 6), we can verify that the first of the above formulas corre-

sponds exactly to Eq, (1. 8).
It is convenient to begin analysis of system of linear equations (5, 8) by first eliminat-
ing the density correction p2 . This yields two differential equations and one final rela-

tion for determining the functions re, p: and v,,. namely

dp: 9y dps 3(n—1)
-1 BP2 .
N TN == g =y,
dry 1 pr* 2 } dri  v—1 dn 4 dn
s e | —A(l-m)9 2 _ _
dn - [u " P ® +1 d'n ’-‘l’“l d'l" re )(pl dn P2 (‘) 10)
-1 v-1 V-1
3n -2 ’1 " odn 2 r
{("—” CIRT ]”‘m P TINE) e
1 —s-npn ;ﬂlplu dry . 2 "?vxl
=% . dn vix+1) 7n

It is clear from this that the general solution of the initial system can be constructed
with the aid of the two linearly independent integrals of the homogeneous equations
corresponding to (5.10) and a particular solution of the nonhomogeneous equations, As
1 — 0 the asymptotic expansion of the first linearly independent solution of the homo-
geneous systen corresponding to the initial system hecomes

ry == Amk/vn +..h pa=At ..., pa= Asnz(l-ﬂ)/mx iy D= Amk/vn_*_ o
with the constants (6.11)
i‘z_ . kx (% 4- 1) vl (%+1)/) As k(x +- 1) w11/
AT T A=) M M = ey b e
A (D) [x@Br—vn—2) 421 —n)} p Vit —2(1—n)
A4 2n% = "y )

For the second linearly independent solution of the aforementioned system we obtain
vax+2(l—n)

7'2‘::8}-{—,,,‘ p,:BaTI+,__’ pz:'-“B;;‘q vnx +..., vramef—... (5.12)
where the coefficients are given by

B g BBy B ) Gn—2)
B ' B %o BT 2n
A—=n)(x4+1){0n—vn—86) , |
b= 2vnt Ao
As regards the particular solution of initial system (5, 8), it is given by the formulas
P=Cmt R p=0C'° (5.43)
~8ge-1) -0 _=m)
pe == Can ( + ..., vn*xCﬂ) 4+ ... 4= pesanyy J
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All the constants appearing in these expressions are related to A¢ and ko by the equa-

t
ions o n(x—1) e Come — 4 i
PE A D) =2 —n) (kD] Mo Mo e 3 < o
e k2 (1 — n) (376 il 2) 3-vp{X~1)/% v .. ¥ (%~1)/x
C"'(%+1)lvnu——-2(1-—n)] Mo iy , Co=3T1 My

The constants Ay and ho can be found by numerical integration of system of nonlinear
equations (5, 7); the solution of linear system (5, 10) yields the values of the coefficients
A; and By In order to render the problem fully determinate we must specify the initial
values of all the required functions, It is clear that these can be found by expanding the
Hugoniot conditions (5.2) at the shockwave front in a series as £ —» oo ., As a result we

find that for n = 1 the basic functions are given by
n=p = P = Ugp = Up1 = 1 (5'14)
and their corrections by
rp=p=0, Pr= U = Upg =1
Results obtained by numerical solution of Cauchy problemn (5.14) for Eqs, (5.7) appear
in monograph [28] (where the self-similar variable A was used as the independent vari-

able of integration),

6, The {nterior flow zone, The principal term in the expansion of the func-
tion pg as 1} — 0 is given by the third equation of (5,13), Comparing it with the corre-
sponding equation of (5. 9), we see that the difference

a, — n*C*C 8_,,,.-2(14.)»,]-2(1—'1)/ vn

in the interior flow zone occupied by the high-entropy layer must consist of terms of the
same order of smallness, This immediately implies that either the stream function 1

or the proportional quantity 1, must be taken as the interior variable, The singularities
in the remaining correction functions r,, p, and v,, are weaker than the singularity in
the function P,. In view of this property, we seek the solution of Egs. (5,1) for the entro-

pic layer in the form
wmx—2(1—n)

r=Ct[R,({;) +z o Ry ()]

p= ﬁprVoo%zCz‘z_zu‘n) [Pl ($1) + 2-2-M Py (Py) +

_ ynx+a(1—n)(x—1)
TPy T T Py (by)
_2(1—ﬂ) o
p= 2L o™ T (P (W) + 2 P, ()] (6.1)

2(1—n)(x—1)

v, = Ve [Vn (b)) + 2 * Vi ('q’l)]

2(1—n)(x--1)

v, = ﬁTanCx-ﬂ—")[Vn W +2 T x Va(h)

Substituting asymptotic expansions (5, 9), (5.11) and (5.13) into expressions (5, 6) for
the gas-dynamic parameters in the flow zone contiguous with the shock wave front, we
obtain the conditions which the required functions must satisfy as ¢; — oo, This pro-
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cedure is standard in the method of matching of exterior and interior asymptotic expan-
sions [22, 23], Thus, as ¢y —» oo we have

—1 vy =1/% -
R, — A, Rz“"f(u—')‘kz hol/ [m\\’}e

%41
n*C? y e(uu)]
T vax —2 (1 = n) (x4 1)

Py by, P,— x+1) [:’(‘::12)(1 —n}} k;—lhgtﬂ)!* n*C?4,

P (1 —n) (x4 1) }vﬂ-—v\p »

% (1 — n) (3x — 2) (x-1)/x% 2.,1-8
T ho niC,

(% -+ 1) [vax — 2 (1 — n)]
202 _8(x-1) 21 —n) Y
Py~ hy/* [‘Px‘ + F__nx Pl ")J (ﬁ = '“——(vnx ") )

P, — (x4 1) [vax —2 (1 —n}] hz/x ZCZAl\pla (6.2)

nx (x — 1)

Pg"'*"-

Vxl -3 1 v Vx, — — 2x h(u.l) / xnz(’ 2 [‘q};a e -———-n-cz ﬂ};o(*ﬂ)]

[CE=i
Vrl“" x;—l Ag, Vi

n*CS\p'o

+1

We note that limiting relations (6, 2) generally do not depend on expansions (5.12);
allowance for the latter is important only in determining the terms of higher orders of
smallness occurring in the expressions for the parameters in the entropy layer,

Now let us turn to system (5, 1). Substitution of expansions (6, 1) into the Euler equa-
tion projected onto the J-axis yields

dPy sz =0, w-1dPy  1—n V" (63)

Ay “ap L gy vn

R“‘l d;: £= n')vr(ciu =2 Ve

The condition of conservation of entropy along the streamlines is best taken directly
in the form (5. 3). Making use of the latter, we obtain

PP = [n3C 4 i/, Py — PP, /P =0 (6.4)
From the third equation of system (5,1) we obtain
dR: v-1 » dBy _ w—1
'a\—pl_-‘oy Rl plpxl dyr e vix-+1) (65)
The equation defining the slope of the streamlines implies that
. 2
RVuy= + I Ve, R\Vyg = prarw Ve {6.6)

Finally, the Bernoulli integral yields the equations
; 2%
Vn = i, Vang + m nzczpl /Pl = 0 (6.?)
The above system of ordinary differential equations contains a series of finite relations,

and is therefore readily integrable, It is more difficult to establish the form of the func-
tions By and P which are defined by the integral
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J - S Enzcg + wf{!uﬁ)}'\‘ﬂ;*!!% d‘bl 2 (i (nzca)*lfx
X S uvn/(!—?“)"l {i + (nzcz)~l u]"l/“ du, w = q)'ffl-")fm

The above form of the integral corresponds exactly to integral (1.14) used in our pre-
vious calculations, We also note that determination of the arbitrary constant occurring
in the functrion P, requires a more precise specification of its limiting value as{; — co
than that afforded by the present approximation,

To this end we must include the next term in the expression for the pressure in the
external flow zone contiguous with the shock wave, However, it is unnecessary to solve
the complete system of equations for the functions in the third approximation, since the
order of the term in question in the pressure expansion can be determined by means of
simple estimates, Thus, the solution of system (6, 3)—(8. 7) which satisfies limiting con-
ditions (6.2) as §; — oo becomes

Ri=hg Ry,= — 53 ARt/ (200 /% (R0 T Ny — D ()]

vx+1)
Pi=hy, Py=2lt) Ny X wCA,, Py L=t D pay,
Py = .‘}%J A "he * (n*C’)x"l i(n“fi‘*ﬁ'gﬁ Ny — 4, (¥1)]
o= (h),  Py= SEEIAT A (v)
x—1

_ o oo
Va=1 = Va=—gTyh’ gy

i 3o » 26‘&
Vo= ’”2“ Aoy Vep= — AohSY ‘i’:(w

_ 1 vn w21 —n) a1 a2(1-1) fen
(D_F(_x—' 20—n) ' 2(1—n) = (WC) )

Here

W= {RECZ - ‘plz(l-ﬂ)f\m ]11')1:

Substituting the expressions for the functions R, and R, into the first equation of (6, 1),
making use of relation (1, 8) for converting from the constant A, to the coefficients gy
and h,, and comparing the resulting relation with (4, 4), we conclude that they are exactly
coincident, The conclusions drawn from the consideration of integral (1, 2) have now
been fully justified within the framework of the matching of exterior and interior asymp-
totic expansions, This method has enabled us not only to carry out a more rigorous
mathematical analysis of the stream parameters in the entropy layer for inverse gas-
dynamic problems, but also to refine considerably our picture of the layer itself, Indeed,
the above corrections of the pressure, density, and velocity vector components could not
have been found by analyzing the self-similar solutions of the piston expansion problem,

We note that asymptotic expansions for the exterior and interior flow zones were pre-
viously constructed by the authors of {15], but their formulas for the velocity vector differ
from our own; in fact, one of the terms which they discard from the expression for the
transverse component of the velocity vector is of higher order of magnitude than the
term retained, However, this error has no effect on the form of the function r (z, ¥).
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ANALYSIS OF TRANSONIC FLOWS PAST
SOLIDS OF REVOLUTION

PMM Vol, 34, N3, 1970, pp.508-513

Tu, M, LIPNITSKII and T, B, LLSHTTS
( Moscow)
(Received July 1, 1969)

We present a numerical iterative scheme for solving gasdynamic problems by the ascer-
tainment method suitable for computing transonic flows past solids of revolution, A short
description of the numerical procedure is followed by the results of computing flows past
a sphere, an ellipsoid, a combination of a sphere and a cylinder of varying aspect ratio
and a combination of a sphere and a cone, for various supercritical values of the Mach
number, Mach number level curves constructed illustrate the flow in the local supersonic
zones, their configuration and change, and the position of the shock waves,

Numerical methods for analyzing transonic flows in which closed supersonic zones
appear are only beginning to be developed, Chushkin [1] used the method of integral
correlations to analyze the flow past an ellipsoid of revolution for one particular case,
namely when the Mach number of the incident flow is equal to unity and the influence
domair is bounded downstream by the limit characteristics, Below we study the possibi-
lity of computing transonic flows past solids of revolution using the ascertainment method,
The scheme of implicit differences utilized here is described in detail in [2], where it is
used to solve a simple problem of the Laval nozzle,

1, To apply the ascertainment method we take the equations of unsteady motion of
a perfect gas in cylindrical coordinates Y. They can be written in abbreviated form as

oz oz oz

Here Z and F are vectors (columns) with the following components



